EconPapers    
Economics at your fingertips  
 

Impacts of Metering-Based Dynamic Priority Schemes

Raphaël Lamotte (), André de Palma () and Nikolas Geroliminis ()
Additional contact information
Raphaël Lamotte: School of Architecture, Civil and Environmental Engineering, EPFL, 1015 Lausanne, Switzerland
André de Palma: CY Cergy Paris Université, THEMA, 95011 Cergy-Pontoise, France
Nikolas Geroliminis: School of Architecture, Civil and Environmental Engineering, EPFL, 1015 Lausanne, Switzerland

Transportation Science, 2022, vol. 56, issue 2, 358-380

Abstract: Several works published over the last two decades have shown for a stylized set-up with homogeneous users that metering-based priority (MBP) schemes may generate Pareto improving departure time adjustments similar to those induced by congestion pricing, but without any financial transaction. We investigate whether MBP (i) still generates significant savings and (ii) remains Pareto-improving, with various sources of heterogeneity (in schedule flexibility, desired arrival time, and capacity usage). We consider two types of schemes: one where the priority status is allocated randomly (R-MBP) and another (HOV-MBP), which only prioritizes users with small capacity usage (e.g., carpoolers). We find that the relative total cost savings of R-MBP decrease with heterogeneity in flexibility, but may increase with heterogeneity in desired arrival time. It fails however to be Pareto-improving, as nonprioritized users are almost systematically worse-off. HOV-MBP circumvents this issue by generating an ordering effect and a modal shift, which both contribute to a better distribution of benefits among users. Under favorable circumstances, they may even restore a Pareto improvement. Overall, MBP appears as a realistic way to alleviate congestion, scoring well both in terms of efficiency and social acceptability.

Keywords: priority; metering; departure time choice; bottleneck; congestion (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/trsc.2021.1091 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:56:y:2022:i:2:p:358-380

Access Statistics for this article

More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ortrsc:v:56:y:2022:i:2:p:358-380