EconPapers    
Economics at your fingertips  
 

The Stochastic Dynamic Postdisaster Inventory Allocation Problem with Trucks and UAVs

R. M. van Steenbergen (), W. J. A. van Heeswijk () and M. R. K. Mes ()
Additional contact information
R. M. van Steenbergen: Department of High-Tech Business and Entrepreneurship, University of Twente, Enschede 7522 NB, Netherlands
W. J. A. van Heeswijk: Department of High-Tech Business and Entrepreneurship, University of Twente, Enschede 7522 NB, Netherlands
M. R. K. Mes: Department of High-Tech Business and Entrepreneurship, University of Twente, Enschede 7522 NB, Netherlands

Transportation Science, 2025, vol. 59, issue 2, 360-390

Abstract: Humanitarian logistics operations face increasing difficulties due to rising demands for aid in disaster areas. This paper investigates the dynamic allocation of scarce relief supplies across multiple affected districts over time. It introduces a novel stochastic dynamic postdisaster inventory allocation problem (SDPDIAP) with trucks and unmanned aerial vehicles (UAVs) delivering relief goods under uncertain supply and demand. The relevance of this humanitarian logistics problem lies in the importance of considering the intertemporal social impact of deliveries. We achieve this by considering social costs (transportation and deprivation costs) when allocating scarce supplies. Furthermore, we consider the inherent uncertainties of disaster areas and the potential use of cargo UAVs to enhance operational efficiency. This study proposes two anticipatory solution methods based on approximate dynamic programming, specifically decomposed linear value function approximation (DL-VFA) and neural network value function approximation (NN-VFA) to effectively manage uncertainties in the dynamic allocation process. We compare DL-VFA and NN-VFA with various state-of-the-art methods (e.g., exact reoptimization and proximal policy optimization) and results show a 6%–8% improvement compared with the best benchmarks. NN-VFA provides the best performance and captures nonlinearities in the problem, whereas DL-VFA shows excellent scalability against a minor performance loss. From a practical standpoint, the experiments reveal that consideration of social costs results in improved allocation of scarce supplies both across affected districts and over time. Finally, results show that deploying UAVs can play a crucial role in the allocation of relief goods, especially in the first stages after a disaster. The use of UAVs reduces transportation and deprivation costs together by 16%–20% and reduces maximum deprivation times by 19%–40% while maintaining similar levels of demand coverage, showcasing efficient and effective operations.

Keywords: deprivation costs; dynamic resource allocation; humanitarian logistics; UAVs; reinforcement learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/trsc.2023.0438 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:59:y:2025:i:2:p:360-390

Access Statistics for this article

More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-04-05
Handle: RePEc:inm:ortrsc:v:59:y:2025:i:2:p:360-390