The impact of licensed-knowledge attributes on the innovation performance of licensee firms: evidence from the Chinese electronic industry
Yuandi Wang,
Zhao Zhou () and
Jason Li-Ying
The Journal of Technology Transfer, 2013, vol. 38, issue 5, 699-715
Abstract:
In this article, we provide a compelling case for demonstrating “learning-by-licensing,” and we further investigate the moderating effect of specific licensed-knowledge attributes on the innovation performance of licensee firms. This case is based on a unique dataset from the China State of Intellectual Property Office regarding technology-licensing activities and spanning the years 2000–2010. Using this dataset we make a longitudinal analysis of the lagging learning effect that transferee firms experience when they in-license technology. The empirical results from 71 Chinese electronic-industry firms reconfirm the concept of “learning-by-licensing.” Moreover, the results also indicate that both technology complexity and technology generality, which are attributes of licensed knowledge, have positive moderating effects on the relationship between technology in-licensing and the subsequent innovation performance of licensee firms. However, such a positive moderating effect was not found for the newness of technology. Copyright The Author(s) 2013
Keywords: Technology licensing; Knowledge attributes; Technological learning; Innovation performance; China; L2; L24; L25 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10961-012-9260-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:jtecht:v:38:y:2013:i:5:p:699-715
Ordering information: This journal article can be ordered from
http://www.springer. ... nt/journal/10961/PS2
DOI: 10.1007/s10961-012-9260-0
Access Statistics for this article
The Journal of Technology Transfer is currently edited by Albert N. Link, Donald S. Siegel, Barry Bozeman and Simon Mosey
More articles in The Journal of Technology Transfer from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().