Extreme damping in composite materials with negative-stiffness inclusions
R. S. Lakes (),
T. Lee,
A. Bersie and
Y. C. Wang
Additional contact information
R. S. Lakes: Department of Engineering Physics
T. Lee: Biomedical Engineering Department
A. Bersie: Department of Engineering Physics
Y. C. Wang: Department of Engineering Physics
Nature, 2001, vol. 410, issue 6828, 565-567
Abstract:
Abstract When a force deforms an elastic object, practical experience suggests that the resulting displacement will be in the same direction as the force. This property is known as positive stiffness1. Less familiar is the concept of negative stiffness, where the deforming force and the resulting displacement are in opposite directions. (Negative stiffness is distinct from negative Poisson's ratio2,3,4,5,6, which refers to the occurrence of lateral expansion upon stretching an object.) Negative stiffness can occur, for example, when the deforming object has stored7 (or is supplied8 with) energy. This property is usually unstable, but it has been shown theoretically9 that inclusions of negative stiffness can be stabilized within a positive-stiffness matrix. Here we describe the experimental realization of this composite approach by embedding negative-stiffness inclusions of ferroelastic vanadium dioxide in a pure tin matrix. The resulting composites exhibit extreme mechanical damping and large anomalies in stiffness, as a consequence of the high local strains that result from the inclusions deforming more than the composite as a whole. Moreover, for certain temperature ranges, the negative-stiffness inclusions are more effective than diamond inclusions for increasing the overall composite stiffness. We expect that such composites could be useful as high damping materials, as stiff structural elements or for actuator-type applications.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.nature.com/articles/35069035 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:410:y:2001:i:6828:d:10.1038_35069035
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/35069035
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().