EconPapers    
Economics at your fingertips  
 

Late-stage oxidative C(sp3)–H methylation

Kaibo Feng, Raundi E. Quevedo, Jeffrey T. Kohrt, Martins S. Oderinde, Usa Reilly and M. Christina White ()
Additional contact information
Kaibo Feng: University of Illinois
Raundi E. Quevedo: University of Illinois
Jeffrey T. Kohrt: Groton Laboratories
Martins S. Oderinde: Bristol-Myers Squibb Company
Usa Reilly: Groton Laboratories
M. Christina White: University of Illinois

Nature, 2020, vol. 580, issue 7805, 621-627

Abstract: Abstract Frequently referred to as the ‘magic methyl effect’, the installation of methyl groups—especially adjacent (α) to heteroatoms—has been shown to dramatically increase the potency of biologically active molecules1–3. However, existing methylation methods show limited scope and have not been demonstrated in complex settings1. Here we report a regioselective and chemoselective oxidative C(sp3)–H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C–H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C–H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp3)–H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites—including drugs (for example, tedizolid) and natural products—are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates—an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1—via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-020-2137-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2137-8

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-020-2137-8

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2137-8