Structure of the shutdown state of myosin-2
Charlotte A. Scarff,
Glenn Carrington,
David Casas-Mao,
Joseph M. Chalovich,
Peter J. Knight,
Neil A. Ranson and
Michelle Peckham ()
Additional contact information
Charlotte A. Scarff: University of Leeds
Glenn Carrington: University of Leeds
David Casas-Mao: University of Leeds
Joseph M. Chalovich: East Carolina University
Peter J. Knight: University of Leeds
Neil A. Ranson: University of Leeds
Michelle Peckham: University of Leeds
Nature, 2020, vol. 588, issue 7838, 515-520
Abstract:
Abstract Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, ‘shutdown’ state with the filament-forming tail folded onto the two heads1, which prevents filament formation and inactivates the motors2. The mechanism by which this happens is unclear. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one regulatory light chain interacts with the tail, and the other with the partner head, revealing how the regulatory light chains stabilize the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and the light chains stabilize the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all isoforms of myosin-2 and provides a framework for understanding their disease-causing mutations.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41586-020-2990-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:588:y:2020:i:7838:d:10.1038_s41586-020-2990-5
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-2990-5
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().