Cortical response selectivity derives from strength in numbers of synapses
Benjamin Scholl (),
Connon I. Thomas,
Melissa A. Ryan,
Naomi Kamasawa and
David Fitzpatrick
Additional contact information
Benjamin Scholl: Max Planck Florida Institute for Neuroscience
Connon I. Thomas: Max Planck Florida Institute for Neuroscience
Melissa A. Ryan: Max Planck Florida Institute for Neuroscience
Naomi Kamasawa: Max Planck Florida Institute for Neuroscience
David Fitzpatrick: Max Planck Florida Institute for Neuroscience
Nature, 2021, vol. 590, issue 7844, 111-114
Abstract:
Abstract Single neocortical neurons are driven by populations of excitatory inputs, which form the basis of neuronal selectivity to features of sensory input. Excitatory connections are thought to mature during development through activity-dependent Hebbian plasticity1, whereby similarity between presynaptic and postsynaptic activity selectively strengthens some synapses and weakens others2. Evidence in support of this process includes measurements of synaptic ultrastructure and in vitro and in vivo physiology and imaging studies3–8. These corroborating lines of evidence lead to the prediction that a small number of strong synaptic inputs drive neuronal selectivity, whereas weak synaptic inputs are less correlated with the somatic output and modulate activity overall6,7. Supporting evidence from cortical circuits, however, has been limited to measurements of neighbouring, connected cell pairs, raising the question of whether this prediction holds for a broad range of synapses converging onto cortical neurons. Here we measure the strengths of functionally characterized excitatory inputs contacting single pyramidal neurons in ferret primary visual cortex (V1) by combining in vivo two-photon synaptic imaging and post hoc electron microscopy. Using electron microscopy reconstruction of individual synapses as a metric of strength, we find no evidence that strong synapses have a predominant role in the selectivity of cortical neuron responses to visual stimuli. Instead, selectivity appears to arise from the total number of synapses activated by different stimuli. Moreover, spatial clustering of co-active inputs appears to be reserved for weaker synapses, enhancing the contribution of weak synapses to somatic responses. Our results challenge the role of Hebbian mechanisms in shaping neuronal selectivity in cortical circuits, and suggest that selectivity reflects the co-activation of large populations of presynaptic neurons with similar properties and a mixture of strengths.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-020-03044-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:590:y:2021:i:7844:d:10.1038_s41586-020-03044-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-020-03044-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().