EconPapers    
Economics at your fingertips  
 

Angular momentum generation in nuclear fission

J. N. Wilson (), D. Thisse, M. Lebois, N. Jovančević, D. Gjestvang, R. Canavan, M. Rudigier, D. Étasse, R-B. Gerst, L. Gaudefroy, E. Adamska, P. Adsley, A. Algora, M. Babo, K. Belvedere, J. Benito, G. Benzoni, A. Blazhev, A. Boso, S. Bottoni, M. Bunce, R. Chakma, N. Cieplicka-Oryńczak, S. Courtin, M. L. Cortés, P. Davies, C. Delafosse, M. Fallot, B. Fornal, L. Fraile, A. Gottardo, V. Guadilla, G. Häfner, K. Hauschild, M. Heine, C. Henrich, I. Homm, F. Ibrahim, Ł. W. Iskra, P. Ivanov, S. Jazrawi, A. Korgul, P. Koseoglou, T. Kröll, T. Kurtukian-Nieto, L. Meur, S. Leoni, J. Ljungvall, A. Lopez-Martens, R. Lozeva, I. Matea, K. Miernik, J. Nemer, S. Oberstedt, W. Paulsen, M. Piersa, Y. Popovitch, C. Porzio, L. Qi, D. Ralet, P. H. Regan, K. Rezynkina, V. Sánchez-Tembleque, S. Siem, C. Schmitt, P.-A. Söderström, C. Sürder, G. Tocabens, V. Vedia, D. Verney, N. Warr, B. Wasilewska, J. Wiederhold, M. Yavahchova, F. Zeiser and S. Ziliani
Additional contact information
J. N. Wilson: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
D. Thisse: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
M. Lebois: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
N. Jovančević: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
D. Gjestvang: University of Oslo
R. Canavan: University of Surrey
M. Rudigier: University of Surrey
D. Étasse: LPC Caen
R-B. Gerst: Universität zu Köln
L. Gaudefroy: CEA/DAM Bruyères-le-Châtel
E. Adamska: University of Warsaw
P. Adsley: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
A. Algora: IFIC, CSIC-University of Valencia
M. Babo: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
K. Belvedere: University of Surrey
J. Benito: Universidad Complutense de Madrid, CEI Moncloa
G. Benzoni: INFN
A. Blazhev: Universität zu Köln
A. Boso: National Physical Laboratory
S. Bottoni: INFN
M. Bunce: National Physical Laboratory
R. Chakma: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
N. Cieplicka-Oryńczak: Polish Academy of Sciences
S. Courtin: Université de Strasbourg, CNRS
M. L. Cortés: RIKEN Nishina Center
P. Davies: University of Manchester
C. Delafosse: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
M. Fallot: Université de Nantes
B. Fornal: Polish Academy of Sciences
L. Fraile: Universidad Complutense de Madrid, CEI Moncloa
A. Gottardo: INFN Laboratori Nazionali di Legnaro
V. Guadilla: Université de Nantes
G. Häfner: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
K. Hauschild: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
M. Heine: Université de Strasbourg, CNRS
C. Henrich: Fachbereich Physik, Institut für Kernphysik
I. Homm: Fachbereich Physik, Institut für Kernphysik
F. Ibrahim: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
Ł. W. Iskra: INFN
P. Ivanov: National Physical Laboratory
S. Jazrawi: University of Surrey
A. Korgul: University of Warsaw
P. Koseoglou: Fachbereich Physik, Institut für Kernphysik
T. Kröll: Fachbereich Physik, Institut für Kernphysik
T. Kurtukian-Nieto: Université de Bordeaux, CNRS, CENBG UMR 5797
L. Meur: Université de Nantes
S. Leoni: INFN
J. Ljungvall: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
A. Lopez-Martens: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
R. Lozeva: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
I. Matea: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
K. Miernik: University of Warsaw
J. Nemer: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
S. Oberstedt: European Commission, Joint Research Centre
W. Paulsen: University of Oslo
M. Piersa: University of Warsaw
Y. Popovitch: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
C. Porzio: INFN
L. Qi: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
D. Ralet: Grand Accélérateur National d’Ions Lourds
P. H. Regan: University of Surrey
K. Rezynkina: Katholieke Universiteit Leuven
V. Sánchez-Tembleque: Universidad Complutense de Madrid, CEI Moncloa
S. Siem: University of Oslo
C. Schmitt: Université de Strasbourg, CNRS
P.-A. Söderström: Fachbereich Physik, Institut für Kernphysik
C. Sürder: Fachbereich Physik, Institut für Kernphysik
G. Tocabens: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
V. Vedia: Universidad Complutense de Madrid, CEI Moncloa
D. Verney: Université Paris-Saclay, CNRS/IN2P3, IJC Laboratory
N. Warr: Universität zu Köln
B. Wasilewska: Polish Academy of Sciences
J. Wiederhold: Fachbereich Physik, Institut für Kernphysik
M. Yavahchova: Bulgarian Academy of Sciences
F. Zeiser: University of Oslo
S. Ziliani: INFN

Nature, 2021, vol. 590, issue 7847, 566-570

Abstract: Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning1; this phenomenon has been a mystery in nuclear physics for over 40 years2,3. The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum4–12. Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the γ-ray heating problem in nuclear reactors13,14, for the study of the structure of neutron-rich isotopes15,16, and for the synthesis and stability of super-heavy elements17,18.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03304-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:590:y:2021:i:7847:d:10.1038_s41586-021-03304-w

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03304-w

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:590:y:2021:i:7847:d:10.1038_s41586-021-03304-w