Structural basis of gating modulation of Kv4 channel complexes
Yoshiaki Kise (),
Go Kasuya (),
Hiroyuki H. Okamoto,
Daichi Yamanouchi,
Kan Kobayashi,
Tsukasa Kusakizako,
Tomohiro Nishizawa,
Koichi Nakajo and
Osamu Nureki ()
Additional contact information
Yoshiaki Kise: The University of Tokyo
Go Kasuya: Jichi Medical University
Hiroyuki H. Okamoto: The University of Tokyo
Daichi Yamanouchi: The University of Tokyo
Kan Kobayashi: The University of Tokyo
Tsukasa Kusakizako: The University of Tokyo
Tomohiro Nishizawa: The University of Tokyo
Koichi Nakajo: Jichi Medical University
Osamu Nureki: The University of Tokyo
Nature, 2021, vol. 599, issue 7883, 158-164
Abstract:
Abstract Modulation of voltage-gated potassium (Kv) channels by auxiliary subunits is central to the physiological function of channels in the brain and heart1,2. Native Kv4 tetrameric channels form macromolecular ternary complexes with two auxiliary β-subunits—intracellular Kv channel-interacting proteins (KChIPs) and transmembrane dipeptidyl peptidase-related proteins (DPPs)—to evoke rapidly activating and inactivating A-type currents, which prevent the backpropagation of action potentials1–5. However, the modulatory mechanisms of Kv4 channel complexes remain largely unknown. Here we report cryo-electron microscopy structures of the Kv4.2–DPP6S–KChIP1 dodecamer complex, the Kv4.2–KChIP1 and Kv4.2–DPP6S octamer complexes, and Kv4.2 alone. The structure of the Kv4.2–KChIP1 complex reveals that the intracellular N terminus of Kv4.2 interacts with its C terminus that extends from the S6 gating helix of the neighbouring Kv4.2 subunit. KChIP1 captures both the N and the C terminus of Kv4.2. In consequence, KChIP1 would prevent N-type inactivation and stabilize the S6 conformation to modulate gating of the S6 helices within the tetramer. By contrast, unlike the reported auxiliary subunits of voltage-gated channel complexes, DPP6S interacts with the S1 and S2 helices of the Kv4.2 voltage-sensing domain, which suggests that DPP6S stabilizes the conformation of the S1–S2 helices. DPP6S may therefore accelerate the voltage-dependent movement of the S4 helices. KChIP1 and DPP6S do not directly interact with each other in the Kv4.2–KChIP1–DPP6S ternary complex. Thus, our data suggest that two distinct modes of modulation contribute in an additive manner to evoke A-type currents from the native Kv4 macromolecular complex.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.nature.com/articles/s41586-021-03935-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:599:y:2021:i:7883:d:10.1038_s41586-021-03935-z
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-03935-z
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().