EconPapers    
Economics at your fingertips  
 

Excitons and emergent quantum phenomena in stacked 2D semiconductors

Nathan P. Wilson, Wang Yao, Jie Shan and Xiaodong Xu ()
Additional contact information
Nathan P. Wilson: University of Washington
Wang Yao: University of Hong Kong
Jie Shan: Cornell University
Xiaodong Xu: University of Washington

Nature, 2021, vol. 599, issue 7885, 383-392

Abstract: Abstract The design and control of material interfaces is a foundational approach to realize technologically useful effects and engineer material properties. This is especially true for two-dimensional (2D) materials, where van der Waals stacking allows disparate materials to be freely stacked together to form highly customizable interfaces. This has underpinned a recent wave of discoveries based on excitons in stacked double layers of transition metal dichalcogenides (TMDs), the archetypal family of 2D semiconductors. In such double-layer structures, the elegant interplay of charge, spin and moiré superlattice structure with many-body effects gives rise to diverse excitonic phenomena and correlated physics. Here we review some of the recent discoveries that highlight the versatility of TMD double layers to explore quantum optics and many-body effects. We identify outstanding challenges in the field and present a roadmap for unlocking the full potential of excitonic physics in TMD double layers and beyond, such as incorporating newly discovered ferroelectric and magnetic materials to engineer symmetries and add a new level of control to these remarkable engineered materials.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.nature.com/articles/s41586-021-03979-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-03979-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-021-03979-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-03979-1