Isolation and characterization of a californium metallocene
Conrad A. P. Goodwin,
Jing Su,
Lauren M. Stevens,
Frankie D. White,
Nickolas H. Anderson,
John D. Auxier,
Thomas E. Albrecht-Schönzart,
Enrique R. Batista (),
Sasha F. Briscoe,
Justin N. Cross,
William J. Evans (),
Alyssa N. Gaiser,
Andrew J. Gaunt (),
Michael R. James,
Michael T. Janicke,
Tener F. Jenkins,
Zachary R. Jones,
Stosh A. Kozimor (),
Brian L. Scott,
Joseph. M. Sperling,
Justin C. Wedal,
Cory J. Windorff,
Ping Yang () and
Joseph W. Ziller
Additional contact information
Conrad A. P. Goodwin: Los Alamos National Laboratory
Jing Su: Los Alamos National Laboratory
Lauren M. Stevens: Los Alamos National Laboratory
Frankie D. White: Los Alamos National Laboratory
Nickolas H. Anderson: Los Alamos National Laboratory
John D. Auxier: Los Alamos National Laboratory
Thomas E. Albrecht-Schönzart: Florida State University
Enrique R. Batista: Los Alamos National Laboratory
Sasha F. Briscoe: Los Alamos National Laboratory
Justin N. Cross: Los Alamos National Laboratory
William J. Evans: University of California
Alyssa N. Gaiser: Florida State University
Andrew J. Gaunt: Los Alamos National Laboratory
Michael R. James: Los Alamos National Laboratory
Michael T. Janicke: Los Alamos National Laboratory
Tener F. Jenkins: University of California
Zachary R. Jones: Los Alamos National Laboratory
Stosh A. Kozimor: Los Alamos National Laboratory
Brian L. Scott: Los Alamos National Laboratory
Joseph. M. Sperling: Florida State University
Justin C. Wedal: University of California
Cory J. Windorff: Florida State University
Ping Yang: Los Alamos National Laboratory
Joseph W. Ziller: University of California
Nature, 2021, vol. 599, issue 7885, 421-424
Abstract:
Abstract Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin–orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1–3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4–12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf–C bond. Analysis suggests the Cf–C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16–22.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-021-04027-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:599:y:2021:i:7885:d:10.1038_s41586-021-04027-8
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-021-04027-8
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().