EconPapers    
Economics at your fingertips  
 

Competition for pollinators destabilizes plant coexistence

Christopher A. Johnson (), Proneet Dutt and Jonathan M. Levine
Additional contact information
Christopher A. Johnson: Princeton University
Proneet Dutt: Swiss Federal Institute of Technology (ETH) Zürich
Jonathan M. Levine: Princeton University

Nature, 2022, vol. 607, issue 7920, 721-725

Abstract: Abstract Mounting concern over the global decline of pollinators has fuelled calls for investigating their role in maintaining plant diversity1,2. Theory predicts that competition for pollinators can stabilize interactions between plant species by providing opportunities for niche differentiation3, while at the same time can drive competitive imbalances that favour exclusion4. Here we empirically tested these contrasting effects by manipulating competition for pollinators in a way that predicts its long-term implications for plant coexistence. We subjected annual plant individuals situated across experimentally imposed gradients in neighbour density to either ambient insect pollination or a pollen supplementation treatment alleviating competition for pollinators. The vital rates of these individuals informed plant population dynamic models predicting the key theoretical metrics of species coexistence. Competition for pollinators generally destabilized the interactions between plant species, reducing the proportion of pairs expected to coexist. Interactions with pollinators also influenced the competitive imbalances between plant species, effects that are expected to strengthen with pollinator decline, potentially disrupting plant coexistence. Indeed, results from an experiment simulating pollinator decline showed that plant species experiencing greater reductions in floral visitation also suffered greater declines in population growth rate. Our results reveal that competition for pollinators may weaken plant coexistence by destabilizing interactions and contributing to competitive imbalances, information critical for interpreting the impacts of pollinator decline.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-022-04973-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:607:y:2022:i:7920:d:10.1038_s41586-022-04973-x

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-022-04973-x

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:607:y:2022:i:7920:d:10.1038_s41586-022-04973-x