Tracking chromatin state changes using nanoscale photo-proximity labelling
Ciaran P. Seath,
Antony J. Burton,
Xuemeng Sun,
Gihoon Lee,
Ralph E. Kleiner,
David W. C. MacMillan () and
Tom W. Muir ()
Additional contact information
Ciaran P. Seath: Merck Center for Catalysis at Princeton University
Antony J. Burton: Princeton University
Xuemeng Sun: Princeton University
Gihoon Lee: Princeton University
Ralph E. Kleiner: Princeton University
David W. C. MacMillan: Merck Center for Catalysis at Princeton University
Tom W. Muir: Princeton University
Nature, 2023, vol. 616, issue 7957, 574-580
Abstract:
Abstract Interactions between biomolecules underlie all cellular processes and ultimately control cell fate. Perturbation of native interactions through mutation, changes in expression levels or external stimuli leads to altered cellular physiology and can result in either disease or therapeutic effects1,2. Mapping these interactions and determining how they respond to stimulus is the genesis of many drug development efforts, leading to new therapeutic targets and improvements in human health1. However, in the complex environment of the nucleus, it is challenging to determine protein–protein interactions owing to low abundance, transient or multivalent binding and a lack of technologies that are able to interrogate these interactions without disrupting the protein-binding surface under study3. Here, we describe a method for the traceless incorporation of iridium-photosensitizers into the nuclear micro-environment using engineered split inteins. These Ir-catalysts can activate diazirine warheads through Dexter energy transfer to form reactive carbenes within an approximately 10 nm radius, cross-linking with proteins in the immediate micro-environment (a process termed µMap) for analysis using quantitative chemoproteomics4. We show that this nanoscale proximity-labelling method can reveal the critical changes in interactomes in the presence of cancer-associated mutations, as well as treatment with small-molecule inhibitors. µMap improves our fundamental understanding of nuclear protein–protein interactions and, in doing so, is expected to have a significant effect on the field of epigenetic drug discovery in both academia and industry.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-05914-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:616:y:2023:i:7957:d:10.1038_s41586-023-05914-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-05914-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().