Electrically driven organic laser using integrated OLED pumping
Kou Yoshida,
Junyi Gong,
Alexander L. Kanibolotsky,
Peter J. Skabara,
Graham A. Turnbull () and
Ifor D. W. Samuel ()
Additional contact information
Kou Yoshida: University of St Andrews
Junyi Gong: University of St Andrews
Alexander L. Kanibolotsky: University of Glasgow
Peter J. Skabara: University of Glasgow
Graham A. Turnbull: University of St Andrews
Ifor D. W. Samuel: University of St Andrews
Nature, 2023, vol. 621, issue 7980, 746-752
Abstract:
Abstract Organic semiconductors are carbon-based materials that combine optoelectronic properties with simple fabrication and the scope for tuning by changing their chemical structure1–3. They have been successfully used to make organic light-emitting diodes2,4,5 (OLEDs, now widely found in mobile phone displays and televisions), solar cells1, transistors6 and sensors7. However, making electrically driven organic semiconductor lasers is very challenging8,9. It is difficult because organic semiconductors typically support only low current densities, suffer substantial absorption from injected charges and triplets, and have additional losses due to contacts10,11. In short, injecting charges into the gain medium leads to intolerable losses. Here we take an alternative approach in which charge injection and lasing are spatially separated, thereby greatly reducing losses. We achieve this by developing an integrated device structure that efficiently couples an OLED, with exceptionally high internal-light generation, with a polymer distributed feedback laser. Under the electrical driving of the integrated structure, we observe a threshold in light output versus drive current, with a narrow emission spectrum and the formation of a beam above the threshold. These observations confirm lasing. Our results provide an organic electronic device that has not been previously demonstrated, and show that indirect electrical pumping by an OLED is a very effective way of realizing an electrically driven organic semiconductor laser. This provides an approach to visible lasers that could see applications in spectroscopy, metrology and sensing.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41586-023-06488-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:621:y:2023:i:7980:d:10.1038_s41586-023-06488-5
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-023-06488-5
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().