EconPapers    
Economics at your fingertips  
 

Observation of vortices in a dipolar supersolid

Eva Casotti, Elena Poli, Lauritz Klaus, Andrea Litvinov, Clemens Ulm, Claudia Politi, Manfred J. Mark, Thomas Bland and Francesca Ferlaino ()
Additional contact information
Eva Casotti: Österreichische Akademie der Wissenschaften
Elena Poli: Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik
Lauritz Klaus: Österreichische Akademie der Wissenschaften
Andrea Litvinov: Österreichische Akademie der Wissenschaften
Clemens Ulm: Österreichische Akademie der Wissenschaften
Claudia Politi: Österreichische Akademie der Wissenschaften
Manfred J. Mark: Österreichische Akademie der Wissenschaften
Thomas Bland: Fakultät für Mathematik, Informatik und Physik, Institut für Experimentalphysik
Francesca Ferlaino: Österreichische Akademie der Wissenschaften

Nature, 2024, vol. 635, issue 8038, 327-331

Abstract: Abstract Supersolids are states of matter that spontaneously break two continuous symmetries: translational invariance owing to the appearance of a crystal structure and phase invariance owing to phase locking of single-particle wavefunctions, responsible for superfluid phenomena. Although originally predicted to be present in solid helium1–5, ultracold quantum gases provided a first platform to observe supersolids6–10, with particular success coming from dipolar atoms8–12. Phase locking in dipolar supersolids has been investigated through, for example, measurements of the phase coherence8–10 and gapless Goldstone modes13, but quantized vortices, a hydrodynamic fingerprint of superfluidity, have not yet been observed. Here, with the prerequisite pieces at our disposal, namely a method to generate vortices in dipolar gases14,15 and supersolids with two-dimensional crystalline order11,16,17, we report on the theoretical investigation and experimental observation of vortices in the supersolid phase (SSP). Our work reveals a fundamental difference in vortex seeding dynamics between unmodulated and modulated quantum fluids. This opens the door to study the hydrodynamic properties of exotic quantum systems with numerous spontaneously broken symmetries, in disparate domains such as quantum crystals and neutron stars18.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-024-08149-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:635:y:2024:i:8038:d:10.1038_s41586-024-08149-7

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-024-08149-7

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:nature:v:635:y:2024:i:8038:d:10.1038_s41586-024-08149-7