Flexible learning in complex worlds
Olof Leimar,
Andrés E Quiñones and
Redouan Bshary
Behavioral Ecology, 2024, vol. 35, issue 1, 943-947
Abstract:
Cognitive flexibility can enhance the ability to adjust to changing environments. Here, we use learning simulations to investigate the possible advantages of flexible learning in volatile (changing) environments. We compare two established learning mechanisms, one with constant learning rates and one with rates that adjust to volatility. We study an ecologically relevant case of volatility, based on observations of developing cleaner fish Labroides dimidiatus that experience a transition from a simpler to a more complex foraging environment. There are other similar transitions in nature, such as migrating to a new and different habitat. We also examine two traditional approaches to volatile environments in experimental psychology and behavioral ecology: reversal learning, and learning set formation (consisting of a sequence of different discrimination tasks). These provide experimental measures of cognitive flexibility. Concerning transitions to a complex world, we show that both constant and flexible learning rates perform well, losing only a small proportion of available rewards in the period after a transition, but flexible rates perform better than constant rates. For reversal learning, flexible rates improve the performance with each successive reversal because of increasing learning rates, but this does not happen for constant rates. For learning set formation, we find no improvement in performance with successive shifts to new stimuli to discriminate for either flexible or constant learning rates. Flexible learning rates might thus explain increasing performance in reversal learning but not in learning set formation, and this can shed light on the nature of cognitive flexibility in a given system.
Keywords: Autostep; learning set formation; meta learning; prediction error; Rescorla-Wagner learning; reversal learning; stochasticity; volatility (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/beheco/arad109 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:beheco:v:35:y:2024:i:1:p:943-947.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Behavioral Ecology is currently edited by Louise Barrett
More articles in Behavioral Ecology from International Society for Behavioral Ecology Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().