On specification tests for composite likelihood inference
Jing Huang,
Yang Ning,
Nancy Reid and
Yong Chen
Biometrika, vol. 107, issue 4, 907-917
Abstract:
SummaryComposite likelihood functions are often used for inference in applications where the data have a complex structure. While inference based on the composite likelihood can be more robust than inference based on the full likelihood, the inference is not valid if the associated conditional or marginal models are misspecified. In this paper, we propose a general class of specification tests for composite likelihood inference. The test statistics are motivated by the fact that the second Bartlett identity holds for each component of the composite likelihood function when these components are correctly specified. We construct the test statistics based on the discrepancy between the so-called composite information matrix and the sensitivity matrix. As an illustration, we study three important cases of the proposed tests and establish their limiting distributions under both null and local alternative hypotheses. Finally, we evaluate the finite-sample performance of the proposed tests in several examples.
Keywords: Bartlett identity; Information matrix; Misspecification test; Model specification (search for similar items in EconPapers)
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa039 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y::i:4:p:907-917.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().