Regression-adjusted average treatment effect estimates in stratified randomized experiments
Hanzhong Liu and
Yuehan Yang
Biometrika, vol. 107, issue 4, 935-948
Abstract:
SummaryLinear regression is often used in the analysis of randomized experiments to improve treatment effect estimation by adjusting for imbalances of covariates in the treatment and control groups. This article proposes a randomization-based inference framework for regression adjustment in stratified randomized experiments. We re-establish, under mild conditions, the finite-population central limit theorem for a stratified experiment, and we prove that both the stratified difference-in-means estimator and the regression-adjusted average treatment effect estimator are consistent and asymptotically normal; the asymptotic variance of the latter is no greater and typically less than that of the former. We also provide conservative variance estimators that can be used to construct large-sample confidence intervals for the average treatment effect.
Keywords: Blocking; Randomization-based inference; Randomized block design; Randomized experiments; Stratified sampling (search for similar items in EconPapers)
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa038 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y::i:4:p:935-948.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().