Selective machine learning of doubly robust functionals
Y Cui and
E J Tchetgen Tchetgen
Biometrika, 2024, vol. 111, issue 2, 517-535
Abstract:
SummaryWhile model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce a new selection criterion aimed at bias reduction in estimating the functional of interest based on a novel definition of pseudo risk inspired by the double robustness property. Intuitively, the proposed criterion selects a pair of learners with the smallest pseudo risk, so that the estimated functional is least sensitive to perturbations of a nuisance parameter. We establish an oracle property for a multi-fold cross-validation version of the new selection criterion that states that our empirical criterion performs nearly as well as an oracle with a priori knowledge of the pseudo risk for each pair of candidate learners. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study that we illustrate in simulations and a data application.
Keywords: Average treatment effect; Doubly robust functional; Influence function; Machine learning; Model selection (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asad055 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:111:y:2024:i:2:p:517-535.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().