A class of logistic-type discriminant functions
Shinto Eguchi
Biometrika, 2002, vol. 89, issue 1, 1-22
Abstract:
In two-group discriminant analysis, the Neyman--Pearson Lemma establishes that the ROC, receiver operating characteristic, curve for an arbitrary linear function is everywhere below the ROC curve for the true likelihood ratio. The weighted area between these two curves can be used as a risk function for finding good discriminant functions. The weight function corresponds to the objective of the analysis, for example to minimise the expected cost of misclassification, or to maximise the area under the ROC. The resulting discriminant functions can be estimated by iteratively reweighted logistic regression. We investigate some asymptotic properties in the 'near-logistic' setting, where we assume the covariates have been chosen such that a linear function gives a reasonable, but not necessarily exact, approximation to the true log likelihood ratio. Some examples are discussed, including a study of medical diagnosis in breast cytology. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (8)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:1:p:1-22
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().