On the local geometry of mixture models
Paul Marriott
Biometrika, 2002, vol. 89, issue 1, 77-93
Abstract:
Despite the well-known difficulties of undertaking inference with mixture models, they are frequently used for modelling. These inferential problems arise because the underlying geometry of a mixture family is very complicated. This paper shows that by adding a simplifying assumption, which frequently is natural statistically, the geometric structure is reduced to a much more tractable form. This enables standard inferential techniques to be applied successfully. One result of studying the local geometry is that it unifies the convex and differential geometric theories of mixture models. The techniques proposed are applied to prediction, random effects and measurement error models. Copyright Biometrika Trust 2002, Oxford University Press.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:89:y:2002:i:1:p:77-93
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().