Generalised linear models for correlated pseudo-observations, with applications to multi-state models
Per Kragh Andersen
Biometrika, 2003, vol. 90, issue 1, 15-27
Abstract:
In multi-state models regression analysis typically involves the modelling of each transition intensity separately. Each probability of interest, namely the probability that a subject will be in a given state at some time, is a complex nonlinear function of the intensity regression coefficients. We present a technique which models the state probabilities directly. This method is based on the pseudo-values from a jackknife statistic constructed from simple summary statistic estimates of the state probabilities. These pseudo-values are then used in a generalised estimating equation to obtain estimates of the model parameters. We illustrate how this technique works by studying examples of common regression problems. We apply the technique to model acute graft-versus-host disease in bone marrow transplants. Copyright Biometrika Trust 2003, Oxford University Press.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (32)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:90:y:2003:i:1:p:15-27
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().