EconPapers    
Economics at your fingertips  
 

Predicting future responses based on possibly mis-specified working models

Tianxi Cai, Lu Tian, Scott D. Solomon and L.J. Wei

Biometrika, 2008, vol. 95, issue 1, 75-92

Abstract: Under a general regression setting, we propose an optimal unconditional prediction procedure for future responses. The resulting prediction intervals or regions have a desirable average coverage level over a set of covariate vectors of interest. When the working model is not correctly specified, the traditional conditional prediction method is generally invalid. On the other hand, one can empirically calibrate the above unconditional procedure and also obtain its crossvalidated counterpart. Various large and small sample properties of these unconditional methods are examined analytically and numerically. We find that the 𝒦-fold crossvalidated procedure performs exceptionally well even for cases with rather small sample sizes. The new proposals are illustrated with two real examples, one with a continuous response and the other with a binary outcome. Copyright 2008, Oxford University Press.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asm078 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:1:p:75-92

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:75-92