Efficient nonparametric estimation of causal effects in randomized trials with noncompliance
Jing Cheng,
Dylan S. Small,
Zhiqiang Tan and
Thomas R. Ten Have
Biometrika, 2009, vol. 96, issue 1, 19-36
Abstract:
Causal approaches based on the potential outcome framework provide a useful tool for addressing noncompliance problems in randomized trials. We propose a new estimator of causal treatment effects in randomized clinical trials with noncompliance. We use the empirical likelihood approach to construct a profile random sieve likelihood and take into account the mixture structure in outcome distributions, so that our estimator is robust to parametric distribution assumptions and provides substantial finite-sample efficiency gains over the standard instrumental variable estimator. Our estimator is asymptotically equivalent to the standard instrumental variable estimator, and it can be applied to outcome variables with a continuous, ordinal or binary scale. We apply our method to data from a randomized trial of an intervention to improve the treatment of depression among depressed elderly patients in primary care practices. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn056 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:1:p:19-36
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().