EconPapers    
Economics at your fingertips  
 

A Single Nucleotide Polymorphism within the Acetyl-Coenzyme A Carboxylase Beta Gene Is Associated with Proteinuria in Patients with Type 2 Diabetes

Shiro Maeda, Masa-aki Kobayashi, Shin-ichi Araki, Tetsuya Babazono, Barry I Freedman, Meredith A Bostrom, Jessica N Cooke, Masao Toyoda, Tomoya Umezono, Lise Tarnow, Torben Hansen, Peter Gaede, Anders Jorsal, Daniel P K Ng, Minoru Ikeda, Toru Yanagimoto, Tatsuhiko Tsunoda, Hiroyuki Unoki, Koichi Kawai, Masahito Imanishi, Daisuke Suzuki, Hyoung Doo Shin, Kyong Soo Park, Atsunori Kashiwagi, Yasuhiko Iwamoto, Kohei Kaku, Ryuzo Kawamori, Hans-Henrik Parving, Donald W Bowden, Oluf Pedersen and Yusuke Nakamura

PLOS Genetics, 2010, vol. 6, issue 2, 1-9

Abstract: It has been suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy. A large-scale genotyping analysis of gene-based single nucleotide polymorphisms (SNPs) in Japanese patients with type 2 diabetes identified the gene encoding acetyl-coenzyme A carboxylase beta (ACACB) as a candidate for a susceptibility to diabetic nephropathy; the landmark SNP was found in the intron 18 of ACACB (rs2268388: intron 18 +4139 C > T, p = 1.4×10−6, odds ratio = 1.61, 95% confidence interval [CI]: 1.33–1.96). The association of this SNP with diabetic nephropathy was examined in 9 independent studies (4 from Japan including the original study, one Singaporean, one Korean, and two European) with type 2 diabetes. One case-control study involving European patients with type 1 diabetes was included. The frequency of the T allele for SNP rs2268388 was consistently higher among patients with type 2 diabetes and proteinuria. A meta-analysis revealed that rs2268388 was significantly associated with proteinuria in Japanese patients with type 2 diabetes (p = 5.35×10−8, odds ratio = 1.61, 95% Cl: 1.35–1.91). Rs2268388 was also associated with type 2 diabetes–associated end-stage renal disease (ESRD) in European Americans (p = 6×10−4, odds ratio = 1.61, 95% Cl: 1.22–2.13). Significant association was not detected between this SNP and nephropathy in those with type 1 diabetes. A subsequent in vitro functional analysis revealed that a 29-bp DNA fragment, including rs2268388, had significant enhancer activity in cultured human renal proximal tubular epithelial cells. Fragments corresponding to the disease susceptibility allele (T) had higher enhancer activity than those of the major allele. These results suggest that ACACB is a strong candidate for conferring susceptibility for proteinuria in patients with type 2 diabetes.Author Summary: Although cumulative epidemiological findings have suggested that genetic susceptibility plays an important role in the pathogenesis of diabetic nephropathy, no gene conferring susceptibility to diabetic nephropathy has been definitively identified. In a large-scale association study of 1,312 Japanese subjects with type 2 diabetes using SNPs from a Japanese SNP database, we show that the T-allele of ACACB rs2268388 is associated with diabetic nephropathy. We also show that the association is consistently observed in patients with type 2 diabetes and proteinuria across different ethnic groups, including populations of European descent. Because a DNA fragment corresponding to the disease susceptibility allele is shown to have higher enhancer activity, we hypothesize that the increase in the expression and/or activity of the encoded acetyl-coenzyme A carboxylase beta contributes to the development and progression of diabetic nephropathy. Our present analysis provides novel insight into the pathogenesis of diabetic nephropathy. This finding is important because diabetic nephropathy is a leading cause of end-stage renal disease and affects life expectancy in subjects with type 2 diabetes.

Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000842 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 00842&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1000842

DOI: 10.1371/journal.pgen.1000842

Access Statistics for this article

More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pgen00:1000842