Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize
Jinliang Yang,
Sofiane Mezmouk,
Andy Baumgarten,
Edward S Buckler,
Katherine E Guill,
Michael D McMullen,
Rita H Mumm and
Jeffrey Ross-Ibarra
PLOS Genetics, 2017, vol. 13, issue 9, 1-21
Abstract:
Deleterious alleles have long been proposed to play an important role in patterning phenotypic variation and are central to commonly held ideas explaining the hybrid vigor observed in the offspring of a cross between two inbred parents. We test these ideas using evolutionary measures of sequence conservation to ask whether incorporating information about putatively deleterious alleles can inform genomic selection (GS) models and improve phenotypic prediction. We measured a number of agronomic traits in both the inbred parents and hybrids of an elite maize partial diallel population and re-sequenced the parents of the population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites, but show a lower burden of such sites than a comparable set of traditional landraces. Our modeling reveals widespread evidence for incomplete dominance at these loci, and supports theoretical models that more damaging variants are usually more recessive. We identify haplotype blocks using an identity-by-decent (IBD) analysis and perform genomic prediction analyses in which we weigh blocks on the basis of complementation for segregating putatively deleterious variants. Cross-validation results show that incorporating sequence conservation in genomic selection improves prediction accuracy for grain yield and other fitness-related traits as well as heterosis for those traits. Our results provide empirical support for an important role for incomplete dominance of deleterious alleles in explaining heterosis and demonstrate the utility of incorporating functional annotation in phenotypic prediction and plant breeding.Author summary: A key long-term goal of biology is understanding the genetic basis of phenotypic variation. Although most new mutations are likely disadvantageous, their prevalence and importance in explaining patterns of phenotypic variation is controversial and not well understood. In this study we combine whole genome-sequencing and field evaluation of a maize mapping population to investigate the contribution of deleterious mutations to phenotype. We show that a priori prediction of deleterious alleles correlates well with effect sizes for grain yield and that variants predicted to be more damaging are on average more recessive. We develop a simple model allowing for variation in the heterozygous effects of deleterious mutations and demonstrate its improved ability to predict both phenotypes and hybrid vigor. Our results help reconcile alternative explanations for hybrid vigor and highlight the use of leveraging evolutionary history to facilitate breeding for crop improvement.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007019 (text/html)
https://journals.plos.org/plosgenetics/article/fil ... 07019&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pgen00:1007019
DOI: 10.1371/journal.pgen.1007019
Access Statistics for this article
More articles in PLOS Genetics from Public Library of Science
Bibliographic data for series maintained by plosgenetics ().