EconPapers    
Economics at your fingertips  
 

Molecular basis of dengue virus serotype 2 morphological switch from 29°C to 37°C

Xin-Ni Lim, Chao Shan, Jan K Marzinek, Hongping Dong, Thiam Seng Ng, Justin S G Ooi, Guntur Fibriansah, Jiaqi Wang, Chandra S Verma, Peter J Bond, Pei-Yong Shi and Shee-mei Lok

PLOS Pathogens, 2019, vol. 15, issue 9, 1-25

Abstract: The ability of DENV2 to display different morphologies (hence different antigenic properties) complicates vaccine and therapeutics development. Previous studies showed most strains of laboratory adapted DENV2 particles changed from smooth to “bumpy” surfaced morphology when the temperature is switched from 29°C at 37°C. Here we identified five envelope (E) protein residues different between two alternative passage history DENV2 NGC strains exhibiting smooth or bumpy surface morphologies. Several mutations performed on the smooth DENV2 infectious clone destabilized the surface, as observed by cryoEM. Molecular dynamics simulations demonstrated how chemically subtle substitution at various positions destabilized dimeric interactions between E proteins. In contrast, three out of four DENV2 clinical isolates showed a smooth surface morphology at 37°C, and only at high fever temperature (40°C) did they become “bumpy”. These results imply vaccines should contain particles representing both morphologies. For prophylactic and therapeutic treatments, this study also informs on which types of antibodies should be used at different stages of an infection, i.e., those that bind to monomeric E proteins on the bumpy surface or across multiple E proteins on the smooth surfaced virus.Author summary: DENV2 particles have been shown to change their morphologies (compact smooth to loose bumpy surfaced) when temperature is switched from 28°C to 37°C. We used two DENV2 viruses both belonging to the same strain designation but with a different passage history—one of which exhibited the smooth surfaced morphology while the other was bumpy surfaced, observed by cryoEM. We mutated residues in the E protein of the DENV2 infectious clone that has the smooth surfaced morphology to determine if any could result in a bumpy morphology. Results showed several different mutations could lead to this change. Using molecular dynamics simulations, we showed how these mutations likely destabilize the E protein dimeric interactions. We investigated whether the bumpy morphology also occurs in DENV2 clinical isolates, and showed that these viruses can exhibit both morphologies, indicating that vaccine and therapeutics development should target both virus forms.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1007996 (text/html)
https://journals.plos.org/plospathogens/article/fi ... 07996&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:ppat00:1007996

DOI: 10.1371/journal.ppat.1007996

Access Statistics for this article

More articles in PLOS Pathogens from Public Library of Science
Bibliographic data for series maintained by plospathogens ().

 
Page updated 2025-03-19
Handle: RePEc:plo:ppat00:1007996