Modelling COVID-19 Hotspot Using Bipartite Network Approach
Boon Hao Hong,
Jane Labadin,
Wei King Tiong,
Terrin Lim and
Melvin Hsien Liang Chung
Acta Informatica Pragensia, 2021, vol. 2021, issue 2, 123-137
Abstract:
COVID-19 causes a jarring impact on the livelihoods of people in Malaysia and globally. To prevent an outbreak in the community, identifying the likely sources of infection (hotspots) of COVID-19 is important. The goal of this study is to formulate a bipartite network model of COVID-19 transmissions by incorporating patient mobility data to address the assumption on population homogeneity made in the conventional models and focus on indirect transmission. Two types of nodes - human and location - are the main concern in the research scenario. 21 location nodes and 31 human nodes are identified from a patient's pre-processed mobility data. The parameters used in this study for location node and human node quantifications are the ventilation rate of a location and the environmental properties of the location that affect the stability of the virus such as temperature and relative humidity. The summation rule is applied to quantify all nodes in the network and the link weight between the human node and the location node. The ranking of location and human nodes in this network is computed using a web search algorithm. This model is considered verified as the error obtained from the comparison made between the benchmark model and the COVID-19 bipartite network model is small. As a result, the higher ranking of the location is denoted as a hotspot in this study, and for a human node attached to this node will be ranked higher in the human node ranking. Consequently, the hotspot has a higher risk of transmission compared to other locations. These findings are proposed to provide a framework for public health authorities to identify the sources of infection and high-risk groups of people in the COVID-19 cases to control the transmission at the initial stage.
Keywords: COVID-19; Hotspot; Contact tracing; Bipartite network; Location rank (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://aip.vse.cz/doi/10.18267/j.aip.151.html (text/html)
http://aip.vse.cz/doi/10.18267/j.aip.151.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:prg:jnlaip:v:2021:y:2021:i:2:id:151:p:123-137
Ordering information: This journal article can be ordered from
Redakce Acta Informatica Pragensia, Katedra systémové analýzy, Vysoká škola ekonomická v Praze, nám. W. Churchilla 4, 130 67 Praha 3
http://aip.vse.cz
DOI: 10.18267/j.aip.151
Access Statistics for this article
Acta Informatica Pragensia is currently edited by Editorial Office
More articles in Acta Informatica Pragensia from Prague University of Economics and Business Contact information at EDIRC.
Bibliographic data for series maintained by Stanislav Vojir ().