EconPapers    
Economics at your fingertips  
 

Estimators of Random Effects Variance Components in Meta-Analysis

Lynn Friedman

Journal of Educational and Behavioral Statistics, 2000, vol. 25, issue 1, 1-12

Abstract: In meta-analyses, groups of study effect sizes often do not fit the model of a single population with only sampling, or estimation, variance differentiating the estimates. If the effect sizes in a group of studies are not homogeneous, a random effects model should be calculated, and a variance component for the random effect estimated. This estimate can be made in several ways, but two closed form estimators are in common use. The comparative efficiency of the two is the focus of this report. We show here that these estimators vary in relative efficiency with the actual size of the random effects model variance component. The latter depends on the study effect sizes. The closed form estimators are linear functions of quadratic forms whose moments can be calculated according to a well-known theorem in linear models. We use this theorem to derive the variances of the estimators, and show that one of them is smaller when the random effects model variance is near zero; however, the variance of the other is smaller when the model variance is larger. This leads to conclusions about their relative efficiency.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/10769986025001001 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:25:y:2000:i:1:p:1-12

DOI: 10.3102/10769986025001001

Access Statistics for this article

More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:jedbes:v:25:y:2000:i:1:p:1-12