Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data
Sik-Yum Lee,
Xin-Yuan Song and
John C. K. Lee
Journal of Educational and Behavioral Statistics, 2003, vol. 28, issue 2, 111-134
Abstract:
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models and it is very common to encounter missing data. In this article, an EM type algorithm is developed for maximum likelihood estimation of a general nonlinear structural equation model with ignorable missing data, which are missing at random with an ignorable mechanism. To avoid computation of the complicated multiple integrals involved in the conditional expectations, the E-step is completed by a hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm; while the M-step is completed efficiently by conditional maximization. Standard errors of the maximum likelihood estimates are obtained via Louis’s formula. The methodology is illustrated with results obtained from a simulation study and a real data set with rather complicated missing patterns and a large number of missing entries.
Keywords: Gibbs sampler; MCEM algorithm; Metropolis-Hastings algorithm; missing data; Nonlinear structural equation models (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/10769986028002111 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:28:y:2003:i:2:p:111-134
DOI: 10.3102/10769986028002111
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().