A Two-Stage Regression Approach to Detecting Section Score Inconsistency
Yi-Hsuan Lee and
Charles Lewis
Journal of Educational and Behavioral Statistics, 2025, vol. 50, issue 4, 632-650
Abstract:
For an assessment with multiple sections measuring related constructs, test takers with higher scores on one section are expected to perform better on the related sections. When the sections involve different test designs, test takers with preknowledge of an administration may score unusually high on some sections but not on others. To address such inconsistency, regression approaches have been successfully applied to compare section scores for many years in operational settings. With a focus on outlier analysis, we propose a new two-stage regression approach to detecting score inconsistency among different sections of a test. It is designed to leverage rich historical information from large-scale assessments to help detect unusually high scores on the easier-to-cheat sections based on the scores on the harder-to-cheat sections in new administrations. This paper presents a statistical framework for the two-stage regression procedure and develops analytical results under a null model of no exposure. It also describes an analysis procedure to guide applications. An empirical example is provided to illustrate the proposed method, to evaluate the performance and robustness of the analytical results in real settings, and to compare with two other methods for the detection of inconsistent section scores.
Keywords: test security; exposure; outlier analysis; preknowledge; robustness (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.sagepub.com/doi/10.3102/10769986241263974 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:sae:jedbes:v:50:y:2025:i:4:p:632-650
DOI: 10.3102/10769986241263974
Access Statistics for this article
More articles in Journal of Educational and Behavioral Statistics
Bibliographic data for series maintained by SAGE Publications ().