EconPapers    
Economics at your fingertips  
 

Cost-Effectiveness and Value-of-Information Analysis Using Machine Learning–Based Metamodeling: A Case of Hepatitis C Treatment

John Austin McCandlish, Turgay Ayer and Jagpreet Chhatwal
Additional contact information
John Austin McCandlish: Georgia Institute of Technology, Atlanta, Georgia
Turgay Ayer: Georgia Institute of Technology, Atlanta, Georgia
Jagpreet Chhatwal: Massachusetts General Hospital Institute for Technology Assessment, Boston, Massachusetts

Medical Decision Making, 2023, vol. 43, issue 1, 68-77

Abstract: Background Metamodels can address some of the limitations of complex simulation models by formulating a mathematical relationship between input parameters and simulation model outcomes. Our objective was to develop and compare the performance of a machine learning (ML)–based metamodel against a conventional metamodeling approach in replicating the findings of a complex simulation model. Methods We constructed 3 ML-based metamodels using random forest, support vector regression, and artificial neural networks and a linear regression-based metamodel from a previously validated microsimulation model of the natural history hepatitis C virus (HCV) consisting of 40 input parameters. Outcomes of interest included societal costs and quality-adjusted life-years (QALYs), the incremental cost-effectiveness (ICER) of HCV treatment versus no treatment, cost-effectiveness analysis curve (CEAC), and expected value of perfect information (EVPI). We evaluated metamodel performance using root mean squared error (RMSE) and Pearson’s R 2 on the normalized data. Results The R 2 values for the linear regression metamodel for QALYs without treatment, QALYs with treatment, societal cost without treatment, societal cost with treatment, and ICER were 0.92, 0.98, 0.85, 0.92, and 0.60, respectively. The corresponding R 2 values for our ML-based metamodels were 0.96, 0.97, 0.90, 0.95, and 0.49 for support vector regression; 0.99, 0.83, 0.99, 0.99, and 0.82 for artificial neural network; and 0.99, 0.99, 0.99, 0.99, and 0.98 for random forest. Similar trends were observed for RMSE. The CEAC and EVPI curves produced by the random forest metamodel matched the results of the simulation output more closely than the linear regression metamodel. Conclusions ML-based metamodels generally outperformed traditional linear regression metamodels at replicating results from complex simulation models, with random forest metamodels performing best. Highlights Decision-analytic models are frequently used by policy makers and other stakeholders to assess the impact of new medical technologies and interventions. However, complex models can impose limitations on conducting probabilistic sensitivity analysis and value-of-information analysis, and may not be suitable for developing online decision-support tools. Metamodels, which accurately formulate a mathematical relationship between input parameters and model outcomes, can replicate complex simulation models and address the above limitation. The machine learning–based random forest model can outperform linear regression in replicating the findings of a complex simulation model. Such a metamodel can be used for conducting cost-effectiveness and value-of-information analyses or developing online decision support tools.

Keywords: cost-effectiveness; machine learning; metamodels; microsimulation; sensitivity analysis; value of information analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.sagepub.com/doi/10.1177/0272989X221125418 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:sae:medema:v:43:y:2023:i:1:p:68-77

DOI: 10.1177/0272989X221125418

Access Statistics for this article

More articles in Medical Decision Making
Bibliographic data for series maintained by SAGE Publications ().

 
Page updated 2025-03-19
Handle: RePEc:sae:medema:v:43:y:2023:i:1:p:68-77