Benchmarking different clustering algorithms on functional data
Christina Yassouridis () and
Friedrich Leisch
Additional contact information
Christina Yassouridis: University of Natural Resources and Life Sciences, Institute of Applied Statistics and Computing
Friedrich Leisch: University of Natural Resources and Life Sciences, Institute of Applied Statistics and Computing
Advances in Data Analysis and Classification, 2017, vol. 11, issue 3, No 3, 467-492
Abstract:
Abstract Theoretical knowledge of clustering functions is still scarce and only few models are available in form of applicable code. In literature, most methods are based on the projection of the functions onto a basis and building fixed or random effects models of the basis coefficients. They involve various parameters, among them number of basis functions, projection dimension, number of iterations etc. They usually work well on the data presented in the articles, but their performance has in most cases not been tested objectively on other data sets, nor against each other. The purpose of this paper is to give an overview of several existing methods to cluster functional data. An outline of their theoretic concepts is given and the meaning of their hyperparameters is explained. A simulation study was set up to analyze the parameters’ efficiency and sensitivity on different types of data sets, that were registered on regular and on irregular grids. For each method, a linear model of the clustering results was evaluated with different parameter levels as predictors. Later, the methods’ performances were compared to each other with the help of a visualization tool, to identify which method works the best on a specific kind of data.
Keywords: Functional clustering; Benchmarking; Hyperparameters; 46 Functional analysis; 62 Statistics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11634-016-0261-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:11:y:2017:i:3:d:10.1007_s11634-016-0261-y
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-016-0261-y
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().