Adapted single-cell consensus clustering (adaSC3)
Cornelia Fuetterer (),
Thomas Augustin () and
Christiane Fuchs ()
Additional contact information
Cornelia Fuetterer: Ludwig-Maximilians-University Munich
Thomas Augustin: Ludwig-Maximilians-University Munich
Christiane Fuchs: Bielefeld University
Advances in Data Analysis and Classification, 2020, vol. 14, issue 4, No 10, 885-896
Abstract:
Abstract The analysis of single-cell RNA sequencing data is of great importance in health research. It challenges data scientists, but has enormous potential in the context of personalized medicine. The clustering of single cells aims to detect different subgroups of cell populations within a patient in a data-driven manner. Some comparison studies denote single-cell consensus clustering (SC3), proposed by Kiselev et al. (Nat Methods 14(5):483–486, 2017), as the best method for classifying single-cell RNA sequencing data. SC3 includes Laplacian eigenmaps and a principal component analysis (PCA). Our proposal of unsupervised adapted single-cell consensus clustering (adaSC3) suggests to replace the linear PCA by diffusion maps, a non-linear method that takes the transition of single cells into account. We investigate the performance of adaSC3 in terms of accuracy on the data sets of the original source of SC3 as well as in a simulation study. A comparison of adaSC3 with SC3 as well as with related algorithms based on further alternative dimension reduction techniques shows a quite convincing behavior of adaSC3.
Keywords: Diffusion maps; Non-linear embedding; Single-cell consensus clustering; Simulation data; Single-cell RNA sequencing data; 62H30; 68U20 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11634-020-00428-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:14:y:2020:i:4:d:10.1007_s11634-020-00428-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2
DOI: 10.1007/s11634-020-00428-1
Access Statistics for this article
Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs
More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().