EconPapers    
Economics at your fingertips  
 

Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification

Roberto Medico (), Joeri Ruyssinck (), Dirk Deschrijver () and Tom Dhaene ()
Additional contact information
Roberto Medico: Ghent University - imec
Joeri Ruyssinck: Ghent University - imec
Dirk Deschrijver: Ghent University - imec
Tom Dhaene: Ghent University - imec

Advances in Data Analysis and Classification, 2021, vol. 15, issue 4, No 4, 936 pages

Abstract: Abstract Shapelets are discriminative subsequences extracted from time-series data. Classifiers using shapelets have proven to achieve performances competitive to state-of-the-art methods, while enhancing the model’s interpretability. While a lot of research has been done for univariate time-series shapelets, extensions for the multivariate setting have not yet received much attention. To extend shapelets-based classification to a multidimensional setting, we developed a novel architecture for shapelets learning, by embedding them as trainable weights in a multi-layer Neural Network. We also investigated the introduction of a novel learning strategy for the shapelets, comprising of two additional terms in the optimization goal, to retrieve a reduced set of uncorrelated shapelets. This paper describes the proposed architecture and presents results on ten publicly available benchmark datasets, as well as a comparison with existing state-of-the-art methods. Moreover, the proposed optimization objective leads the model to automatically select smaller sets of uncorrelated shapelets, thus requiring no additional manual optimization on typically important hyper-parameters such as number and length of shapelets. The results show how the proposed approach achieves competitive performance across the datasets, and always leads to a significant reduction in the number of shapelets used. This can make it faster for a domain expert to match shapelets to real patterns, thus enhancing the interpretability of the model. Finally, since the shapelets learnt during training can be extracted from the model they can serve as meaningful insights on the classifier’s decisions and the interactions between different dimensions.

Keywords: Shapelets; Time-series classification; Machine learning; Neural networks; 68T07 Artificial neural networks and deep learning; 62H30 Classification and discrimination; 62M10 Time series (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11634-021-00437-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00437-8

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-021-00437-8

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00437-8