EconPapers    
Economics at your fingertips  
 

Functional fuzzy clusterwise regression analysis

Tianyu Tan (), Hye Suk, Heungsun Hwang and Jooseop Lim

Advances in Data Analysis and Classification, 2013, vol. 7, issue 1, 57-82

Abstract: We propose a functional extension of fuzzy clusterwise regression, which estimates fuzzy memberships of clusters and regression coefficient functions for each cluster simultaneously. The proposed method permits dependent and/or predictor variables to be functional, varying over time, space, and other continua. The fuzzy memberships and clusterwise regression coefficient functions are estimated by minimizing an objective function that adopts a basis function expansion approach to approximating functional data. An alternating least squares algorithm is developed to minimize the objective function. We conduct simulation studies to demonstrate the superior performance of the proposed method compared to its non-functional counterpart and to examine the performance of various cluster validity measures for selecting the optimal number of clusters. We apply the proposed method to real datasets to illustrate the empirical usefulness of the proposed method. Copyright Springer-Verlag Berlin Heidelberg 2013

Keywords: Functional linear models; Fuzzy clusterwise regression model; Alternating least squares algorithm; 62H30 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11634-013-0126-6 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:advdac:v:7:y:2013:i:1:p:57-82

Ordering information: This journal article can be ordered from
http://www.springer. ... ds/journal/11634/PS2

DOI: 10.1007/s11634-013-0126-6

Access Statistics for this article

Advances in Data Analysis and Classification is currently edited by H.-H. Bock, W. Gaul, A. Okada, M. Vichi and C. Weihs

More articles in Advances in Data Analysis and Classification from Springer, German Classification Society - Gesellschaft für Klassifikation (GfKl), Japanese Classification Society (JCS), Classification and Data Analysis Group of the Italian Statistical Society (CLADAG), International Federation of Classification Societies (IFCS)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:advdac:v:7:y:2013:i:1:p:57-82