EconPapers    
Economics at your fingertips  
 

Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change

Pascalle Smith (), Georg Heinrich, Martin Suklitsch, Andreas Gobiet, Markus Stoffel and Jürg Fuhrer

Climatic Change, 2014, vol. 127, issue 3, 534 pages

Abstract: Irrigation water requirements (IWR) are expected to be influenced by changes in the climate variables driving water availability in the soil-plant system. Most of the agricultural surface areas of the heterogeneous Swiss Rhone catchment are already exposed to drought. Aiming at investigating future pressures on the water resources to fill the growing gap between rain-fed and optimum water supply for cultivation, we downscaled and bias corrected 16 regional climate scenarios from the ENSEMBLES dataset for the period 1951–2050 using a Quantile Mapping methodology calibrated with daily observations from 5 contrasting weather stations. The data reveal an increased evaporative demand over the growing season for almost all stations and scenarios (2021–2049 vs. 1981–2009). The picture is less clear for precipitation, with a projected decrease or increase depending on the scenario, station and month. The main results indicate that bias correction of climate scenarios not only reduces the remaining error between baseline and observations but also enhances the change signal in seasonal IWR estimates. This is due to a higher and more realistic sensitivity of IWR to the atmospheric water budget, the slope of this relationship being steeper in the observations than in the uncorrected data. The seasonal cycle of the IWR change signal shows different sensitivities and climate drivers across crops (grassland and maize) and stations, but a consistent trend towards an increase despite uncertainty. This increased water demand will have to be reconciled with possibly decreased or shifted future water availability from glacier and snow melt. Copyright Springer Science+Business Media Dordrecht 2014

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10584-014-1263-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:127:y:2014:i:3:p:521-534

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584

DOI: 10.1007/s10584-014-1263-4

Access Statistics for this article

Climatic Change is currently edited by M. Oppenheimer and G. Yohe

More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:climat:v:127:y:2014:i:3:p:521-534