Forest harvesting and the carbon debt in boreal east-central Canada
Jay R Malcolm (),
Bjart Holtsmark and
Paul W Piascik
Additional contact information
Jay R Malcolm: University of Toronto
Paul W Piascik: University of Toronto
Climatic Change, 2020, vol. 161, issue 3, No 4, 433-449
Abstract:
Abstract Conversion of carbon-rich, primary boreal landscapes to managed ones through clearcut-based silviculture has the potential to decrease landscape-level carbon storage and thereby incur a significant carbon debt. We calculated carbon debts and payback periods associated with production of wood pellets to replace coal, oil and natural gas in electricity generation for such landscape conversion in boreal east-central Canada. Local forest inventory information in combination with the Carbon Budget Model (CBM-CFS3) was used to estimate biomass and dead wood carbon stocks after fire or clearcutting, and resulting age- and disturbance-specific carbon stock estimates were used to populate simulated landscapes. Based on empirical information, we investigated a range of fire-return intervals in the primary landscapes (114–262 years), harvest rotation ages (80–100 years) and conversion efficiency factors (0.17–0.71 tonnes fossil fuel carbon eliminated per tonne harvested wood carbon). After a first rotation of harvesting, carbon stocks declined 33–50% relative to stocks in the natural, fire-dominated landscapes and payback periods ranged from 92 to 757 years. The type of fossil fuel had the strongest effect on payback periods: under average efficiencies, ranges were 122–207, 156–268 and 278–481 years for coal, oil and natural gas respectively. These calculations suggest that under a wide range of assumptions, clearcut-based management of boreal primary landscapes to produce wood pellets to replace fossil fuels in electricity generation will result in net emissions of greenhouse gases to the atmosphere for many decades.
Keywords: Boreal forest; Forest harvesting; Carbon debt; Wood pellets; Electricity generation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10584-020-02711-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:climat:v:161:y:2020:i:3:d:10.1007_s10584-020-02711-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/10584
DOI: 10.1007/s10584-020-02711-8
Access Statistics for this article
Climatic Change is currently edited by M. Oppenheimer and G. Yohe
More articles in Climatic Change from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().