A best linear threshold classification with scale mixture of skew normal populations
Hea-Jung Kim ()
Computational Statistics, 2015, vol. 30, issue 1, 28 pages
Abstract:
This paper describes a threshold classification with $$K$$ K populations whose membership category is associated with the threshold process of a latent variable. It is seen that the optimal procedure (Bayes procedure) for the classification involves a nonlinear classification rule and hence, its analytic properties and an efficient estimation can not be explored due to its complex distribution. As an alternative, this paper proposes the best linear procedure and verifies its effectiveness. For this, the present paper provides the necessary theories for deriving the linear rule and its properties, an efficient inference, and a simulation study that sheds light on the performance of the best linear procedure. It also provides three real data examples to demonstrate the applicability of the best linear procedure. Copyright Springer-Verlag Berlin Heidelberg 2015
Keywords: Threshold classification analysis; Scale mixture of skew normal distribution; Optimal rule; The best linear rule; Robustness (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s00180-014-0517-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:30:y:2015:i:1:p:1-28
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-014-0517-y
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().