Bayesian nonparametric hypothesis testing methods on multiple comparisons
Qiuchen Hai and
Zhuanzhuan Ma ()
Additional contact information
Qiuchen Hai: The University of Texas at San Antonio
Zhuanzhuan Ma: The University of Texas Rio Grande Valley
Computational Statistics, 2025, vol. 40, issue 7, No 18, 3867-3882
Abstract:
Abstract In this paper, we introduce Bayesian testing procedures based on the Bayes factor to compare the means across multiple populations in classical nonparametric contexts. The proposed Bayesian methods are designed to maximize the probability of rejecting the null hypothesis when the Bayes factor exceeds a specified evidence threshold. It is shown that these procedures have straightforward closed-form expressions based on classical nonparametric test statistics and their corresponding critical values, allowing for easy computation. We also demonstrate that they effectively control Type I error and enable researchers to make consistent decisions aligned with both frequentist and Bayesian approaches, provided that the evidence threshold for the Bayesian methods is set according to the significance level of the frequentist tests. Importantly, the proposed approaches allow for the quantification of evidence from empirical data in favor of the null hypothesis, an advantage that frequentist methods lack, as they cannot quantify support for the null when the null hypothesis is not rejected. We also present simulation studies and real-world applications to illustrate the performance of the proposed testing procedures.
Keywords: Bayes factor; Restricted most powerful Bayesian tests; Nonparametric hypothesis testing; Statistical evidence (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s00180-025-01615-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:7:d:10.1007_s00180-025-01615-4
Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2
DOI: 10.1007/s00180-025-01615-4
Access Statistics for this article
Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik
More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().