EconPapers    
Economics at your fingertips  
 

Nonparametric CUSUM change-point detection procedures based on modified empirical likelihood

Peiyao Wang and Wei Ning ()
Additional contact information
Peiyao Wang: New York University
Wei Ning: Bowling Green State University

Computational Statistics, 2025, vol. 40, issue 9, No 5, 5021 pages

Abstract: Abstract Sequential change-point analysis, which identifies a change of probability distribution in a sequence of random observations, has important applications in many fields. A good method should detect the change point as soon as possible, and keep a low rate of false alarms. As an outstanding procedure, Page’s CUSUM rule holds many optimalities. However, its implementation requires the pre-change and post-change distributions to be known which is not achievable in practice. In this article, we propose a nonparametric-CUSUM procedure by embedding different versions of empirical likelihood by assuming that two training samples, before and after change, are available for parametric estimations. Simulations are conducted to compare the performance of the proposed methods to the existing methods. The results show that when the underlying distribution is unknown and training sample sizes are small, our modified procedures exhibit advantages by giving a smaller delay of detection. A well-log data is provided to illustrate the detection procedure.

Keywords: Sequential change detection; CUSUM; False alarms; Empirical likelihood (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-024-01598-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-024-01598-8

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-024-01598-8

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-18
Handle: RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-024-01598-8