EconPapers    
Economics at your fingertips  
 

Weighted LAD-Liu-LASSO for robust estimation and sparsity

Murat Genç () and Adewale Lukman ()
Additional contact information
Murat Genç: Tarsus University
Adewale Lukman: University of North Dakota

Computational Statistics, 2025, vol. 40, issue 9, No 8, 5075-5104

Abstract: Abstract The Least Absolute Shrinkage and Selection Operator (LASSO) is widely used for parameter estimation and variable selection but can encounter challenges with outliers and heavy-tailed error distributions. Integrating variable selection methods such as LASSO with Weighted Least Absolute Deviation (WLAD) has been explored in limited studies to handle these problems. In this study, we proposed the integration of Weighted Least Absolute Deviation with Liu-LASSO to handle variable selection, parameter estimation, and heavy-tailed error distributions due to the advantages of the Liu-LASSO approach over traditional LASSO methods. This approach is demonstrated through a simple simulation study and real-world application. Our findings showcase the superiority of our method over existing techniques while maintaining the asymptotic efficiency comparable to the unpenalized LAD estimator.

Keywords: Lasso; Least absolute deviation; Weighted estimator; Liu-Lasso; Outliers; Variable selection (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s00180-025-01605-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-025-01605-6

Ordering information: This journal article can be ordered from
http://www.springer.com/statistics/journal/180/PS2

DOI: 10.1007/s00180-025-01605-6

Access Statistics for this article

Computational Statistics is currently edited by Wataru Sakamoto, Ricardo Cao and Jürgen Symanzik

More articles in Computational Statistics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-18
Handle: RePEc:spr:compst:v:40:y:2025:i:9:d:10.1007_s00180-025-01605-6