An inexact spectral bundle method for convex quadratic semidefinite programming
Huiling Lin ()
Computational Optimization and Applications, 2012, vol. 53, issue 1, 45-89
Abstract:
We present an inexact spectral bundle method for solving convex quadratic semidefinite optimization problems. This method is a first-order method, hence requires much less computational cost in each iteration than second-order approaches such as interior-point methods. In each iteration of our method, we solve an eigenvalue minimization problem inexactly, and solve a small convex quadratic semidefinite program as a subproblem. We give a proof of the global convergence of this method using techniques from the analysis of the standard bundle method, and provide a global error bound under a Slater type condition for the problem in question. Numerical experiments with matrices of order up to 3000 are performed, and the computational results establish the effectiveness of this method. Copyright Springer Science+Business Media, LLC 2012
Keywords: Semidefinite programming; Nonsmooth optimization methods; Inexact spectral bundle method; Eigenvalue minimization problem; Approximate subgradients (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-011-9443-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:53:y:2012:i:1:p:45-89
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-011-9443-x
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().