A homotopy method for nonlinear semidefinite programming
Li Yang () and
Bo Yu ()
Computational Optimization and Applications, 2013, vol. 56, issue 1, 96 pages
Abstract:
In this paper, for solving the nonlinear semidefinite programming problem, a homotopy is constructed by using the parameterized matrix inequality constraint. Existence of a smooth path determined by the homotopy equation, which starts from almost everywhere and converges to a Karush–Kuhn–Tucker point, is proven under mild conditions. A predictor-corrector algorithm is given for numerically tracing the smooth path. Numerical tests with nonlinear semidefinite programming formulations of several control design problems with the data contained in COMPl e ib are done. Numerical results show that the proposed algorithm is feasible and applicable. Copyright Springer Science+Business Media New York 2013
Keywords: Nonlinear semidefinite programming; Homotopy method; Predictor-corrector algorithm; Global convergence (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-013-9545-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:56:y:2013:i:1:p:81-96
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-013-9545-8
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().