An acceleration scheme for Dykstra’s algorithm
Williams López () and
Marcos Raydan ()
Computational Optimization and Applications, 2016, vol. 63, issue 1, 29-44
Abstract:
Dykstra’s algorithm is an iterative alternating projection procedure for solving the best approximation problem: find the closest point, to a given one, in the intersection of a finite number of closed and convex sets. The main drawback of Dykstra’s algorithm is its frequent slow convergence. In this work we develop an acceleration scheme with a strong geometrical flavor, which guarantees termination at the solution in two cycles of projections in the case of two closed subspaces. The proposed scheme can also be applied to any other alternating projection algorithm that solves the best approximation problem. Copyright Springer Science+Business Media New York 2016
Keywords: Dykstra’s algorithm; Alternating projection methods; Orthogonal projections; Acceleration schemes (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10589-015-9768-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:63:y:2016:i:1:p:29-44
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-015-9768-y
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().