EconPapers    
Economics at your fingertips  
 

Nonconvex robust programming via value-function optimization

Ying Cui (), Ziyu He () and Jong-Shi Pang ()
Additional contact information
Ying Cui: University of Minnesota
Ziyu He: University of Southern California
Jong-Shi Pang: University of Southern California

Computational Optimization and Applications, 2021, vol. 78, issue 2, No 4, 450 pages

Abstract: Abstract Convex programming based robust optimization is an active research topic in the past two decades, partially because of its computational tractability for many classes of optimization problems and uncertainty sets. However, many problems arising from modern operations research and statistical learning applications are nonconvex even in the nominal case, let alone their robust counterpart. In this paper, we introduce a systematic approach for tackling the nonconvexity of the robust optimization problems that is usually coupled with the nonsmoothness of the objective function brought by the worst-case value function. A majorization-minimization algorithm is presented to solve the penalized min-max formulation of the robustified problem that deterministically generates a “better” solution compared with the starting point (that is usually chosen as an unrobustfied optimal solution). A generalized saddle-point theorem regarding the directional stationarity is established and a game-theoretic interpretation of the computed solutions is provided. Numerical experiments show that the computed solutions of the nonconvex robust optimization problems are less sensitive to the data perturbation compared with the unrobustfied ones.

Keywords: Robust optimization; Nonconvex; Nonsmooth; Value function (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00245-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00245-4

Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589

DOI: 10.1007/s10589-020-00245-4

Access Statistics for this article

Computational Optimization and Applications is currently edited by William W. Hager

More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00245-4