Using partial spectral information for block diagonal preconditioning of saddle-point systems
Alison Ramage (),
Daniel Ruiz (),
Annick Sartenaer () and
Charlotte Tannier ()
Additional contact information
Alison Ramage: University of Strathclyde
Daniel Ruiz: Université de Toulouse
Annick Sartenaer: University of Namur
Charlotte Tannier: University of Namur
Computational Optimization and Applications, 2021, vol. 78, issue 2, No 2, 353-375
Abstract:
Abstract Considering saddle-point systems of the Karush–Kuhn–Tucker (KKT) form, we propose approximations of the “ideal” block diagonal preconditioner based on the exact Schur complement proposed by Murphy et al. (SIAM J Sci Comput 21(6):1969–1972, 2000). We focus on the case where the (1,1) block is symmetric and positive definite, but with a few very small eigenvalues that possibly affect the convergence of Krylov subspace methods like Minres. Assuming that these eigenvalues and their associated eigenvectors are available, we first propose a Schur complement preconditioner based on this knowledge and establish lower and upper bounds on the preconditioned Schur complement. We next analyse theoretically the spectral properties of the preconditioned KKT systems using this Schur complement approximation in two spectral preconditioners of block diagonal forms. In addition, we derive a condensed “two in one” formulation of the proposed preconditioners in combination with a preliminary level of preconditioning on the KKT system. Finally, we illustrate on a PDE test case how, in the context of a geometric multigrid framework, it is possible to construct practical block preconditioners that help to improve on the convergence of Minres.
Keywords: Saddle-point linear systems; Block diagonal preconditioning; Spectral preconditioning; Preconditioned Krylov methods (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10589-020-00246-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00246-3
Ordering information: This journal article can be ordered from
http://www.springer.com/math/journal/10589
DOI: 10.1007/s10589-020-00246-3
Access Statistics for this article
Computational Optimization and Applications is currently edited by William W. Hager
More articles in Computational Optimization and Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().