Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data
J. Vera (),
Rodrigo Macías and
Willem Heiser
Journal of Classification, 2013, vol. 30, issue 3, 370-396
Abstract:
Classification and spatial methods can be used in conjunction to represent the individual information of similar preferences by means of groups. In the context of latent class models and using Simulated Annealing, the cluster-unfolding model for two-way two-mode preference rating data has been shown to be superior to a two-step approach of first deriving the clusters and then unfolding the classes. However, the high computational cost makes the procedure only suitable for small or medium-sized data sets, and the hypothesis of independent and normally distributed preference data may also be too restrictive in many practical situations. Therefore, an alternating least squares procedure is proposed, in which the individuals and the objects are partitioned into clusters, while at the same time the cluster centers are represented by unfolding. An enhanced Simulated Annealing algorithm in the least squares framework is also proposed in order to address the local optimum problem. Real and artificial data sets are analyzed to illustrate the performance of the model. Copyright Springer Science+Business Media New York 2013
Keywords: Unfolding; Cluster analysis; Least squares; Minimum distance; Interval level data; Preference ratings (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-013-9144-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:30:y:2013:i:3:p:370-396
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-013-9144-5
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().