EconPapers    
Economics at your fingertips  
 

The Canonical Analysis of Distance

John Gower (), Niel Roux and Sugnet Gardner-Lubbe

Journal of Classification, 2014, vol. 31, issue 1, 107-128

Abstract: Canonical Variate Analysis (CVA) is one of the most useful of multivariate methods. It is concerned with separating between and within group variation among N samples from K populations with respect to p measured variables. Mahalanobis distance between the K group means can be represented as points in a (K - 1) dimensional space and approximated in a smaller space, with the variables shown as calibrated biplot axes. Within group variation may also be shown, together with circular confidence regions and other convex prediction regions, which may be used to discriminate new samples. This type of representation extends to what we term Analysis of Distance (AoD), whenever a Euclidean inter-sample distance is defined. Although the N × N distance matrix of the samples, which may be large, is required, eigenvalue calculations are needed only for the much smaller K × K matrix of distances between group centroids. All the ancillary information that is attached to a CVA analysis is available in an AoD analysis. We outline the theory and the R programs we developed to implement AoD by presenting two examples. Copyright Springer Science+Business Media New York 2014

Keywords: Analysis of distance; Biplot; Canonical variate analysis (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-014-9149-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:31:y:2014:i:1:p:107-128

Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2

DOI: 10.1007/s00357-014-9149-8

Access Statistics for this article

Journal of Classification is currently edited by Douglas Steinley

More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jclass:v:31:y:2014:i:1:p:107-128