On the Added Value of Bootstrap Analysis for K-Means Clustering
Joeri Hofmans (),
Eva Ceulemans,
Douglas Steinley and
Iven Mechelen
Journal of Classification, 2015, vol. 32, issue 2, 268-284
Abstract:
Because of its deterministic nature, K-means does not yield confidence information about centroids and estimated cluster memberships, although this could be useful for inferential purposes. In this paper we propose to arrive at such information by means of a non-parametric bootstrap procedure, the performance of which is tested in an extensive simulation study. Results show that the coverage of hyper-ellipsoid bootstrap confidence regions for the centroids is in general close to the nominal coverage probability. For the cluster memberships, we found that probabilistic membership information derived from the bootstrap analysis can be used to improve the cluster assignment of individual objects, albeit only in the case of a very large number of clusters. However, in the case of smaller numbers of clusters, the probabilistic membership information still appeared to be useful as it indicates for which objects the cluster assignment resulting from the analysis of the original data is likely to be correct; hence, this information can be used to construct a partial clustering in which the latter objects only are assigned to clusters. Copyright Classification Society of North America 2015
Keywords: K-means; Bootstrapping; Clustering (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s00357-015-9178-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jclass:v:32:y:2015:i:2:p:268-284
Ordering information: This journal article can be ordered from
http://www.springer. ... hods/journal/357/PS2
DOI: 10.1007/s00357-015-9178-y
Access Statistics for this article
Journal of Classification is currently edited by Douglas Steinley
More articles in Journal of Classification from Springer, The Classification Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().